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Abstract

One of the most important mathematical concepts at every level is the concept of form.  Starting
in elementary school arithmetic, continuing through high school algebra and trigonometry,
throughout calculus and in advanced graduate mathematics, students are taught and graded on
how to change forms.  Many students who master the techniques of such form changes as
completing the square, factoring and expanding polynomials do not know why or when to
perform these operations.  Little is said about the concept of forms or about the important aspects
of forms.  There is more to know about forms than how to change forms.  Form changes should
be treated as tactics in the strategies of analytical problem solving.  This paper describes the
principles concerning forms, which are usually omitted from the appropriate texts, and the
important place of forms in the strategies of mathematics.

1. Principles of Mathematical Forms

•  It is natural for mathematical objects (integers, rational numbers, other real numbers,
functions, vectors, linear transformations, complex numbers, tensors, etc.) to have more than
one form.
•  There is no best form for all purposes.
•  Useful special canonical forms are found sometimes.
•  We should be aware of the advantages and disadvantages of the canonical forms that
embody the objects being studied.
•  The principles and techniques involved in changing forms should be made apparent.
•  Any intrinsic properties of the object will be invariant; that is; these properties do not
change even though one may change the form representing the object.

2. Elementary Examples of the Principles

First, consider fractions.  Many forms for writing fractions exist.  A canonical form is the fraction
expressed in lowest terms.  This form is suitable for multiplying and dividing fractions, but this
form is not suitable for the addition or subtraction of unlike fractions.  Then we need to know
that it is always possible to find numbers that will serve as common denominators (and even a
best common denominator) so that we can make the fractions alike.  We need to know that the
multiplication or division of any fraction by any form of the number one will not change the
value of the fraction.  With this understanding of form changing for fractions, it is possible to
accomplish the four arithmetic operations on any pair of fractions.  Invariants include size, sign,
order, arithmetic operation and limit properties.
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Second, consider complex numbers.  Many forms exist for writing complex numbers.
Rectangular form is suitable for addition and subtraction.  While it can be cumbersome to
multiply and divide complex numbers in rectangular form, multiplication and division can be
accomplished quite easily in polar form.  However, polar form is not suitable for doing addition
and subtraction.  So we have the need to change to rectangular form when addition or subtraction
is desired and to change to polar form when multiplication or division is desired.  Neither polar
nor rectangular form is always preferable.  Both forms have their place and it is up to the student
to know the advantages and disadvantages of each form and the techniques of performing the
change from one form of a complex number to the other.  Magnitude is an invariant.

3. Kinds and Forms of Equations

Equations without variables assert the equality of different forms of the same number.  There are
two kinds of equations in a single variable.  The first kind, called a condition, equates different
functions.  It is valid only when the graphs of the functions intersect.  The condition is written
whenever the value of an unknown, which satisfies the condition, is sought.  The solution set is
invariant.

The second kind of equation, called an identity, equates different forms of the same function.
Because the identity is true for every value of x, there is no point in solving for the value of x that
satisfies the identity.  Algebra texts should refer to the various polynomial factoring, expansion
and other algebraic and logarithmic laws as identities.  Doing so might eliminate some of the
mystery students see in trig identities and trig conditions.

Because it is not obvious which complicated equations are identities and which are conditions,
rules need to be established for changing the forms of the equations.  If an equation can be
changed into a form, which is recognizable as an identity, then the equation must be an identity.

How wondrous are identities!  Two apparently different, seemingly unrelated collections of
operations produce the same value for every value of x, whether integer, rational, algebraic or
transcendental.  Plotting both sides of the identity produces exactly the same curve.  Changing
the form of an identity results in a new identity or 0 = 0.  Changing the form of a condition
results in a new condition with the same solutions.

Forms are desired for conditions where the unknown appears in isolation to the first power on
only one side of the equation.  This form of the condition is called the solved form.  The process
of applying the rules for changing a condition to this solved form of the condition is called
solving.

4. Forms of Functions

Functions too are capable of a myriad of forms.  Functions can be embodied in tables, in
symbolic equations and graphs.  Common symbolic equation forms of functions or curves are:

1) direct form y = f(x)
2) inverse form x = g(y)
3) the implicit form F(x, y) = 0
4) composite or chain form y = f(w); w = g(x)
5) parametric form y = f(t); x = g(t)
6) polar form r = f(θ); x = r cos(θ); y = r sin(θ)
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Are these all there are?  Of course not.  But these provide a good beginning.  The different forms
of the equations highlight different aspects of the phenomena being studied.  The most general
form of equation in two variables to arise in applications is the implicit form.  But this form may
not be easy to evaluate y given x or to evaluate x given y.  It is easy to find the derivative y’(x)
for an implicit form but probably it will be implicit also.  The direct or inverse form results if the
implicit form can be solved for y or x.  Unfortunately the direct form for a closed implicit form
may result in an infinite series, which perhaps may not be easy to understand, ponder or evaluate.

Sometimes a variable influences a second variable that in turn controls a third.  In such a case the
chain form may be appropriate for describing the composite control.  Sometimes a complicated
function can be decomposed into the composition of two simpler functions which may than be
studied separately.  Chain functions have a simple differentiation rule.  In order for the
substitution technique of integration to be applicable the integrand should be seen as the
derivative of a composite form.  Functions that can be expressed in composite form are the
functions whose derivatives can be integrated using the chain rule.

If two variables are related and one is dependent on time, then the speeds of the two variables
must be related.  This principle leads to the section and problems in the calculus text called
related rates.  These problems can be viewed as applications of the derivative of chain forms of
functions.

Parametric forms are good for describing phenomena such as the path of a moving particle or the
evolution of a dynamic system.  In fact, it is easy to find velocities and accelerations of such
moving particles in parametric forms.  Parametric forms for motion of particles in the plane
extend into describing the motion of particles in three-dimensional space.  Polar forms are good
for describing periodic or almost periodic systems.

Most curve-plotting software either sets the direct form as default, or the software requires the
user as the first step to select the form of the equation to graph.  Ultimately, it is up to the
individual engineer or technician to choose the form which best suits the problem at hand.

While the derivation of the formulae for finding the derivatives of each of the forms can be found
in most calculus texts, unfortunately a discussion and comparison of the forms themselves are
usually absent.  Differentiation formula may be divided into the following categories:

1. Derivatives of operations:     Sums, differences, product and quotient rules
2. Derivatives of kinds of functions:     Polynomial, fractional exponent, sine, log, etc.
3. Derivatives of forms of functions:     Inverse, implicit, parametric, composite/chain,

    polar and series forms.

A calculus student should not believe that there are an endless number of differentiation formulae
to be mastered.  About a dozen formulae categorized as above will handle the needs of the
engineering student.  Each formula has a particular purpose.  Together they allow the student to
treat almost all of the elementary functions.  It is conceptually important to distinguish forms of
functions from kinds of functions.
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5. Second Degree Polynomials and Completing the Square

Three forms for 2nd degree polynomials are:

1) the sum of scaled powers form y = Ax2 + Bx + C    ,
2) the factored form y = A(x - r1)(x - r2)  ,
3) and the translated square plus a constant form y = A(x - h) 2 + k

Form 1, the sum of scaled powers, highlights the y-intercept.  Not all 2nd degree polynomials
cross the x-axis and have real roots.  But, if they do they can be factored and placed in Form 2,
the factored form, which highlights the roots.  Form 3 highlights the vertex, (h, k).  Form 3 also
has the advantage of being solvable, when possible, for x in terms of y.

In order to utilize the advantages of each form, we should be able to change from any form to any
other form.  Form 3 can be changed to Form 1 by squaring.  Form 2 can be changed to Form 1 by
expanding.  Form 3 can be solved for the roots, when possible, which will enable a change to
Form 2.  Thus we can always change from a form to a form above it in the preceding list.  In
order to change from a form to a form below it in the above list, we will need a way to change
from Form 1 to Form 3.

The technique of accomplishing this form change is called completing the square.  The mastery
of the completing the square technique will allow us to change a 2nd degree polynomial from any
of the above three forms into any of the other forms.  Not all 2nd degree polynomials are
factorable by inspection, but if we complete the square and are than able to solve for the root, we
will have accomplished the factorization.

Suppose a student asks, “Why do I have to learn how to complete the square?”  Who will answer
his question?  Where can he find an answer?  Completing the square is a form changing
operation that applies only to 2nd-degree polynomials.  Following is a list of applications of the
translated square plus a constant form of 2nd-degree polynomials.

1) The form is solvable.
2) The form will highlight the vertices of vertical or horizontal parabolas and the
centers of the other conic sections whose axes are parallel to the coordinate axes.
3) Some functions are integrable when expressed in the translated square plus a
constant form.
4) The translated square plus a constant form can be applied in the theory of Laplace
transforms.

The last two applications will have no meaning for a college algebra student but the student
should know the first two applications.
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6. Forms and Polynomials

Polynomials provide examples of the need for different forms.  Polynomials in sum of scaled
powers form are easy to add, subtract, integrate and differentiate.  Some polynomials can be
completely factored.  The factored form of these polynomials highlights their roots and their
orders and therefore permits the polynomial to be easily graphed.  The nested form of the
polynomial has an algorithm useful for computer evaluation.  The principles regarding
mathematical forms remain valid.  There is more than one form.  There is no best form for all
purposes.  Sum of scaled powers and factored forms are canonical.  Methods are needed to
accomplish the form changes.

7. Forms and Differential Equations

Ordinary differential equations (ODE’s) are forms, not things.  They can describe dynamic
systems, surfaces or curve families.  In the traditional ODE courses the concentration has been on
the form-changing techniques required by integration, not on the properties of the systems
described by the differential equations.  In many traditional ODE courses, students have been
doing a lot of high school algebra and thinking that they were learning about differential
equations.  Too bad.

The differential equation form arises because many of the fundamental laws of continuum
mechanics equate local, differential system variables and their derivatives; e. g. f = ma, and
v = L di/dt.  However the solved form relates the system variables to position or time directly
eliminating the derivatives.  The solved form may be more amenable to computational or
graphical analysis.  Both the differential equation and the solved form describe the same system.

Are differential equations conditions, identities, or something new?  They must be something
new.  If it is asserted that the equation describes an unknown function or class of functions then
the equation should be viewed as a condition, restricting the solution set of unknown functions.
However, since the equation must be true for all values of the independent variable, the
differential equation must be an identity in the independent variable.  It is curious; a differential
equation is a condition from one point of view and at the same time is an identity from another
point of view.

What is a student to comprehend of the chapters on series and numerical solutions to differential
equations?  Faculty know that not all integrands have integrals that yield closed form solutions
and so they do not expect that all differential equations have closed form solutions.  Do the
students know that not all integrands yield closed form solutions?  Would a student think to try a
series form for an ordinary quadrature?  It is this lack of existence of closed form solutions that
lead us to attempt series and numerical solutions.  Should the closed form solutions usually
treated at the beginning of the course be omitted because many equations arising in practice do
not have closed solutions?  Or can the student gain some insight into the behavior of systems that
have closed form solutions as a clue to the behavior of systems that do not have closed form
solutions?  Real mathematics reform will bring these issues regarding forms into the course so
the student can know why the topics that are being studied have been selected.
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Suppose a bright student insists that he is a practical person and he doesn’t need forms and will
never need them.  He insists, as everyone, particularly the math reformers, tells him, that in the
future the Internet will provide all the information he needs.  He insists that computers will do all
his computations and provide numeric and even symbolic answers to his problems.  Is he right?
Or do we tell him that there are times when a numeric answer is not wanted?  There are times
when a relationship or a particular form of a relationship is what is desired.

You may have noticed that the word highlight has been used several times above with a
distinctive meaning.  It occurred to me that I did not know a word to refer to the particular
parameters which are visible in particular forms and are usually not visible in other forms; such
as the center coordinates h, k and radius, r, in the form for the circle (x-h)2 + (y-k)2 = r2.  In the
study of forms such a word is necessary in order to describe the concept.  If faculty and texts do
not discuss forms, then the concept is never brought up.  The concept becomes obscure and
probably like the treasonous concepts in George Orwell’s book, 1984, becomes lost to the
population in need of such concepts.

8. Strategies of Calculus and Algebraic Form Changing

Imagine that a calculus teacher took a strategic approach to teaching calculus.  Since all the
students taking calculus have already passed college algebra and trigonometry, there can be no
benefit to the student in observing a teacher perform any of the functional form changes required
to solve calculus problems.  These tactical form changes should have no place in a calculus
classroom.  The teacher should set up the problem and indicate the strategy needed to solve the
problem but leave the algebra to the student.  The teacher should indicate and then interpret the
results.

Of course teachers do not do this.  Not because it is not right, but because most students who
have passed algebra and trigonometry do not understand mathematical forms and their principles.
These students correctly fear that they do not understand algebra.  These students do not think
that they will get the correct result and want to see someone else do every step.  Somehow it is
commonly, mistakenly believed by both teachers and students alike that doing algebraic form
changing is the way to learn calculus.  It is not.  Calculus has its own concerns which are
different from the algebraic concerns of factoring, expanding, collecting and solving.

In the field of computer programming, structured programming is currently accepted as the
standard.  The faculty explain the strategies, draw block diagrams and place the details in blocks
to be treated at another time or even omitted.  Mathematics teaching and math texts have been
lagging.  If math teachers want to teach analytic problem solving then they will have to learn to
think and explain strategically.  They should not be doing the algebra of form changes in calculus
classes.  Teach forms, including form changing, properly in Algebra and there will be no need to
teach it again unless required by a strategy.
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9. Summary

Why do texts treat forms and strategies so shabbily?  Does no one notice?  Are individual math
teachers compensating for these deficiencies in the textbooks?  Forms are important, pervasive,
and unavoidable in every mathematical area.  Form changing is the nuts and bolts of
mathematics.  But the repetitive mechanics of form changing should not be substituted at the
expense of the strategies in advanced mathematics classes.
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